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Why to study the brain?




Al and Neuroscience

e Brain-inspired models like neural networks CNNs, LLMs based on brain
organization

e Brain = Al, and Al = brain tools

WHY NEUROSCIENCE AND Al
NEED EACH OTHER
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Brain-Computer Interfaces

e From controlling cursors to enabling speech in paralyzed patients.
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Lab to Clinic

e Neurotech aids diagnosis, therapy, and rehabilitation.
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What is Neuroscience?

e Study of the nervous system: brain,

Brain
spinal cord, peripheral nerves. Central
C . =iy Nervous
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Subfields of Neuroscience
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Brain Anatomy Overview

e Major parts: Cortex, Cerebellum, Brainstem, Spinal cord.
e Central vs Peripheral Nervous System.
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Lobes of the Brain

e Frontal
e Parietal
e Occipital

e Temporal
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Neurons and Synapses

e Neurons communicate via electrical impulses and chemical synapses.

e Basic unit of brain function.
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Neurotransmitters

THE STRUCTURES OF NEUROTRANSMITTERS

STRUCTURE KEY: @ Carbon atom © Hydrogen atom (@) Oxygen atom (@ Nitrogen atom (® Rest of molecule
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Brain Networks

Somatosensory Networks
Motor Network

Salience Network
Attention Network
Cognitive Control Network
Default Mode Network
Brain as a dynamic system.
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How to study the brain?




Experimental Methods
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Invasive Electrophysiology
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Depth array

Surface array
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EEG/MEG
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Brain Structure Predicts Brain Function

Passingham’s Conjecture (2002): Each cortical brain region has a unique
pattern of connectivity.

Afferents of area 14 Afferents of area 9
10 10

If we can establish these patterns AND measure the connectivity of a
particular bit of brain tissue, we can predict the functional brain region
identity of the tissue.
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Connectome

Connectome is defined as the set of connections between different parts of
the nervous system.

Connectomes can be at the microscale level like the connectivity between
neurons or could be macroscale which is connectivity between different
regions of brain.

At the macroscale level, structural connectivity is the identification of white
matter pathways between different regions using techniques like Diffusion
Tensor Imaging (DTI) or Diffusion Weiahted Imaging (DWI).

25
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Functional Connectome

Functional connectome is computed as the correlation of the activity of two
brain regions.
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Connectome Fingerprinting: A computational modeling approach for
non-invasively predicting individualized functional brain organization

from the individual’s connectome

Fornito & Bullmore, 2015
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Connectome Fingerprinting: What we know so far?

Structural connectivity predicts face selectivity in FFA (Saygin et. al. 2012), and cortical
selectivity for different visual categories across the cortex (Osher et. al. 2015)

Individual differences can be predicted(Tavor et. al. 2016)

Resting state functional connectivity can predict sensory modality-selective regions in
the frontal cortex(Tobyne et. al. 2018) and dorsal attention network(Osher et. al. 2019)

Murty et. al. 2020 demonstrated the FFA connectivity fingerprints are similar across
congenitally blind and sighted subjects and models trained on one group can predict
activations in others.
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Benchmarks of Connectome Fingerprinting
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A) Task Selection B) Select Parcellation

Connectome
Fingerprinting
Method

C) Search Space Selection

e) Create Test/Train Data and Fit Model VXP Vet
F) Analyse Performance
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Dataset

Human Connectome Project Young Adult dataset - 1200 subjects and 7 tasks but
we used 169 subjects and focussed on the Working Memory task

Parietal and Frontal Search spaces
Working Memory
Resting state data - 4 runs of 15 minutes each Social
Relational
Emotion
Motor
Language
Gambling
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Predictions

Subject 1

Subject 2

Subject 3

Actual

t score
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Benchmarks of Connectome Fingerprinting

1. Quality Of Data: How are predictions affected by
a. Task performance
b. Amount of Resting State data
c. Motion during resting state and task runs

2. How do different learning methods perform?

3. What if we use naturalistic stimuli data for predictions?
4. How does it perform across datasets?

5. How is the test-retest robustness of the CF model?
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Task Performance

Prediction Accuracy vs Task Performance, r=0.44

Comparing the
prediction
accuracy using
the CF model
vs task
performance
(behavioral) for
the parietal LH
search space in
the WM task.

Prediction Accuracy(parietal LH, 60min RS)
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Amount of Resting State Data Required

RS Data needed for subjects with low and high motion

Resting State Duration effect on model prediction accuracy
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Motion in Task

Comparing mean tstat
activation in parietal LH
search space (tstat), CF
prediction accuracy (r),
task performance (%age),
averaged relative
movement in rest and
task runs (mm)

CF Prediction

Movement Rest Runs Movement Task Runs
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Learning methods

We are solving Yy, = Xy.p Bpq Which can be done in the following ways:

® Ordinary Least Squares (OLS)

® Regularized ridge regression - Y\, = Xy,p Bpy T € Where the
regularization parameter penalizes overfitting

® Principal component analysis reduces the X matrix - Y\, = Xy, 1 By

® Deep Neural Network (DNN): Dense architectures with 8 variants
including regularized and unregularized versions

36
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DNN model performance

DNN model performance for 32
test subjects compared with
Ridge based approach. The
model was trained on 128
subjects and tested on 32
subjects for DNN. For Ridge
there was no difference in
prediction accuracy with subjects
greater than 50.
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Type of Model

® Ordinary Least Squares (OLS) performs poorly overall

® Ridge Regression results peak after around 10 subjects

® Principal Component Analysis (PCA) followed by either Ridge or
OLS performs around the same as Ridge regression

® Deep Neural Network (DNN) performs similar to Ridge
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Test Retest Analysis

Test retest analysis looks how well we can get similar results on different days.

HCP Test Retest with 42 subjects having the whole protocol repeated twice with an
average gap of around 5 months.

Only 39 subjects have full data on all the 7 tasks.
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CF prediction accuracy across tasks and sessions

Prediction Accuracy (r)
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Cross Scanner Predictions

We acquired in-lab dataset performing the same HCP WM task
with 18 minutes of resting state data and four runs.

We train the model on one task and predict on the other.

1 — Y1 1
YVxl_XVxP[3 Px1

2 — VY2 2
YVxl_xVxP[3 Px1

2 21
XpB? pxa1 = Y21t
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Summary

We demonstrated the effects of motion in task, resting state and task performance
of the CF model prediction accuracy , the amount of resting state data required for
optimal model building, the number of subjects required for different types of
models.

We analysed if movie data can be used if resting state data is not available or
harder to collect.

We tested the efficacy of the CF model in test retest dataset.

We observed good cross scanner predictability of the CF models
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Cerebellar Connectome Fingerprinting




Cerebellar Connnectome Fingerprinting

Cerebellum is originally thought to be related to motor function but recent studies
have shown that it is involved in working memory, attention and other higher
cognitive tasks (e.g. Stoodley and Schmahmann, 2009; Brissenden et. al., 2016;
Brissenden and Somers, 2018)

A lot of the research focused on Connectivity fingerprinting has focused on the
cerebral cortex, but can we extend this approach to the cerebellum?
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Dataset

Human Connectome Project, 169 subjects

Working memory, relational processing, social processing, reward processing
(gambling), motor movement, language processing tasks

Cerebellar search space

Resting state data - 4 runs of 15 minutes each
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a) Compute task activations c) Compute vertex x seed connectivity matrix

Average
time series Correlate

Cerebellar SUIT space
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esting State Dal

CF Approach

b) Create search space d) Extract data & e) Make predictions &
train model Analyse Model
Performance

48




Individualized cerebellar connectivity fingerprints

a)  Actual Predicted Group

WM 2BK-0BK r=0.62 r=0.31

Tripathi & Somers, Neurolmage (2023)
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Individualized cerebellar connectivity fingerprints
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Individual specificity in predictions
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How are the coefficients related with activations?

a) Working Memory
oefficients ;

; Activation ; ; C
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Summary

CF predictions in the cerebellum are stronger than group average
model for cognitive tasks of the HCP except language task.

We see similar individual specificity in predictions in the cerebellum
as earlier studies have reported (Tavor et. al. 2016, Tobyne et. al.
2018).

Activations in the cortex are proportional to model coefficients across
tasks.
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CF for presurgical planning

Gliomas constitute the majority of brain tumors operated across the US.

Some neurosurgeons have started using task fMRI to map out brain regions for
presurgical planning to minimize tissue damage due to surgery.

Though not all hospitals have the capability and expertise to run task fMRI
protocols.

Some patient populations find it difficult to perform tasks in the MRI scanner.

Can we use CF to aid in presurgical planning by mapping motor and language
networks across patients?
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Dataset

HCP dataset - 169 healthy subjects with motor and language tasks.
Motor task: finger tapping/toe squeeze/tongue movement.
Language task: story comprehension

Clinical dataset from Brigham and Women'’s hospital with 15 patients and 15 healthy
controls:

4-7 mins of resting state scan.
Language task: sentence completion.

Motor task: hand & foot movement, lip pursing.
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Data
Requirement
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Effect of Task
Contrasts

a)

Actual

Predicted

o
~

Average Prediction Accuracy (r)

Left Hand vs Fixation

Left Hand vs Average

0.7

0.6

0.5

0.

E

S

* %

i=

_|eftHand Right Fdot
Condition

t-stat




Effect of
Parcellation
Schemes
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Effect of Task Reliability
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Cross Scanner
Predictions

a)

LH-AVG

RH-AVG
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Patient Predictions



Patient Predictions



Patient predictions without ground truth

Patient 04 Patient 06
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Summary

For prediction of the motor network, the ‘vs-avg’ contrast, Schaefer parcellation,
motor only search space works betters

We need about 20 subjects and greater than four mins of resting state data for
optimal training.

For making predictions, the more the amount of data per subject, the better.
We are able to make good predictions for some patients.
We need better strategies for cross scanner and sequence harmonization.

Patients with higher grade gliomas are harder to predict.
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Alzheimer’s Disease modeling

Network Analysis and Connectivity based Predictive Modeling
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Connectome Based Predictive modelling of
Alzheimer’s disease (AD)

AD progression starts years before the first symptoms occur.

Can we use CPM method to predict tau/amyloid concentrations across different AD
types?
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Dataset

Colombia Boston (COLBOS) Cohort study - Autosomal Dominant AD:
32 PSENT1 carriers including 7 MCI subjects

35 PSEN1 non-carriers
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Connectome Based Predictive Modelling (CPM)

Connectome Based Predictive
Modelling (Finn et. al. 2015,
Rosenberg et. al. 2015, Shen et. al.
2017) shows association and
predictability of connectome and
behavioral measures like attention,
fluid intelligence etc.

CF connectome is voxels x parcels
whereas CPM connectome is
parcels x parcels
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Predicting tau/amyloid in Presenilin1 Carriers
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Entorhinal Tau
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Predicting behavioral scores

Word List Recall
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Subcortical Contributions
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Summary

Tau/amyloid concentrations and rate of deposition differs across PSEN1and APOE4 carriers
Global, node and edge level differences between the groups are present across the groups.

CPM able to predict significantly tau concentrations in PSEN1 carriers across entorhinal, precuneus and
inferior temporal regions.

CPM able to predict significantly amyloid concentrations in PSEN1 carriers across entorhinal region.

When combined with non carriers, the predictions were non significant for tau/amyloid concentrations and
word list recall values.

Models trained on APOE4 carriers and non-carriers were not significant suggesting that COLBOS groups
denotes consistent change with the group different from sporadic AD progression.

The model has less false positive rate suggesting possible usability clinically.
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Overall Summary

Connectivity based techniques can predict network organization in healthy
subjects.

Cerebellar-cerebro connectivity predicts individual specific brain activations.

CF can be used to make predictions in motor and language networks on clinical
populations but more work is needed.

Autosomal Dominant AD causes different network disruptions in the brain.

CPM can make strong predictions within ADAD but not in sporadic AD.
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What we do?

Integrative
Neuroscience &
Technology Lab

Our lab operates at the intersection of neuroimaging,
neurophysiology, neuroanatomy, data science, and Al fo explore the
organization of the human brain. We investigate the localization and
dynamics of various cognitive functions, how these processes are
disrupted in cognitive disorders, and whether predictive models can
be developed to better understand and diagnose these conditions.

labs.iitgn.ac.in/int

Behavioral

Science
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EEG Foundation Challenge

From Cross Task to
Cross Subject EEG
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Figure 1: HBN-EEG Dataset and Data split. A. EEG Is recorded using a 128-channel system during active tasks (l.e.,
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Test and Validation. Detalls in subsection 1.2 for the proposal.
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Thanks a lot for listening

Integrative Neuroscience & Technology: labs.iitgn.ac.in/int
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